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'. W a t o r s  are Sub lect to  Interaction  forces  when 
they maneuver In a constfilned  workspace. Our goal IS t o  
develop a method for  the deslan of  controllers  of 
constralned man1 urntors In the- presence of  model 
uncertalnties. ?he controller must carru  out frne 
maneuvers When the  manlpulator IS not constramed, and 

measurement, when the  manlpulator IS constralned. R t  the 
compliant motion. with  or  without  Interactlorrfor-ce 

same tlme stabllit must  be preserved if bounded 
uncertalntles  are  alfowed In modelllng  the manlpuletors. 
Stabihty of  the  rnanlpulator  and environment as a whole 
and  the  reservatlon of stabltlty In the  face  of chan es 

the design method. Ule start  wlth  conventtonal 
are  two  &&mental issues that  have  been considere8 In 

controller-desian speclflcatlons  concemina the  treatment 
of  external +forces when the  manlculator IS not 

when the rnanlpulator IS constralned, we  state a set of 
constrained. Generalizing thls concept Po include cases 

ractical design speciflcstions In the  frequency domain 
!hat IS meanlngful  from the standpolnt of  control  theory 
and assures the desired  compllant motlon In the Cartesian 
coordlnate frame  and  stablllt In the presence of bounded 

stabillty  of  the manlpulafor  and its envlronrnent. Whfe thls 
uncertalnties. This ap r o a g  also assures the  lobal 

paper concerns the  fundamentals o f  compliant  motion, 
part 2 of  thls  paper [Reference 24) IS devoted to  the 
controller design method. 

2- - 
For a broad  class of  manlpulators under  closed-loop 

control,  fundamental  differences In behavlor and 
controller deslgn complexlty can be  attributed to two 
types  of maneuvers:  unconstralned  and constralned. In 
the  first case, the manipulator IS dnven In Its  workspace 
without  contact  wlth  the envlronment.  Note that  the 
environment might exist in the  manlpulator work-space 
wlthout Imposing any constralnt  on  the rnanlpulator  motlon. 
In constralned maneuvers, the  manipulator is driven in its 
workspace so that  the envlronrnent  contlnuously exerts a 
dynamic or klnematlc constralnt  on  the manlpulator's 
motion. Spray palntrng by a manipulator IS an example of 
the  flrst class of maneuver. The end-point of  the 
manipulator  travels  through  certain  polnts In its 
work-space without ang restriction. On the  other hand, 
inserting a computer board in a slot [Le.. the  peg-irrhole 
problem1 or  turning a crank bg means of a manlpulator  are 
examples of constralned maneuvers; the  endpoint  of  the 
manipulator is in contact  with  the environment  and  cannot 
move In a l l  directlons. R dynamlc maneuver such as 
Le6dlng a manlputator In a free envlronment toward a 
metal  surface  and  then grinding the  surface may consist of 

both  types  of maneuvers. Our classification  of maneuvers 
as unconstralned and constralned is similar to  the 
clessiflcation  introduced  by Whrtney 1201, who categorized 
manlpulations into  "rearrangement" tasks m d  "force" 
tasks. Thls paper  deals  wlth constralned maneuvering. 

In constralned maneuvering, the  interactlon  forces 
must be accommodated rather  than resisted. I f  we  define 
"comptlancy" as a measure of  the  abllitu  of a manlp- 
ta  react to  interactlon  forces and toraues, we  can state 
our- ob,Jective as: to  assure  compliant motlon in the  global 
Cartesian coordinate  frame  for  manlpulators  that must 
maneuver in constrained environments.  Previous 
researchers have suggested two approaches for assunng 
compliant  motion for manipulators. The first approach is 
aimed at  controlllng  force  ltorquel  and  posltion 
[orientatlonl in a norkconflicting way. In this method, force 
[torque] is commanded along  (about)  those directlons 
constrained by the  environment,  while  posltion 
(onentation1 IS commanded along (about1 those directions In 
whlch the  manlpuletor IS unconstralned and  free  to move. 
The second approach is aimed a t  developlng a relatlonshlp 
between  lnteractlon  forces  and  manipulator posltlon. By 
controlling  the  manipulator  posltlon and  specifylng Its 
relatlonshlp to  the  Interaction forces, a designer can 
ensure that  the  manlpulator  will  be  able  to maneuver in a 
constrained environment while maintainlng appropnate 
contact forces. 

The first approach was motivated  bg  several studles. 
Paul  and Shimano [16) partitioned  the  motion  of a 
manipulator  into position-  and force-control  in a global 
Cartesian coordinate  frame. Then, with  the  help of a 
declslomaklng "loglc"  hldden In a supervlsonJ computer 
program, they  amved  at  the  two  sets of actuators  that 
could  best  contnbute to  the posltion  control  loop and the 
force  control loop.  Railbert and Craig 117) also  partitloned 
the  motlon of the  rnanlpulator  in a global Cartesian 
coordinate frame. They used a posltlon  controller to move 
the  manipulator In unconstrained  directlons and a force 
controller to  push  the manipul.ator agalnst the 
envlronment with  the deslred contact force. They then 
amved a t  Input  values  for  the  actuators  (wlthout assunng 
stabllltyl Such that a l l  actuators Would contribute to  both 
partltions. Whitney (20) smved  a t  a slngleioop 
velocitg-control scheme with  the  net  effect  of  controlllng 
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the  contact force. Slmllar work In the  generation  of 
compliant motlon has been done by Mason (151, and Wu and 
Paul (23). Common t o   a l l  such methods for ensunng 
compliant motlon IS the dependence of  the  controller's 
structure  on  both  the klnematics and dynamlcs of  the 
manlpulator  and of  Its envlronment. For example, If the 
end-polnt o f  a manipulator travels  from one constralned 
point t o  another such that  the envlronment at  the new 
point  exerts  constralnts  that  differ  from  the  constraints  at 
the  first point, then a new controller  with a different 
structhre  must  be designed 1.0 mcommodate Ihe  new 
constralnts. In the second  approach toward  generatlng 
comptlant motlon, a relatlonshlp IS defined  between  the 
posltlon  of  the  manlpulator  and  the  lnteractlon forces. 
Salisbury (19) started  by deflning a linear  static  function 
that  relates  interaction  forces t o  end-point position via a 
stiffness  matrix in a Cartesian coordlnate frame. 
Monitoring  this  rebtionshlp  by means of a computer 
program ensures that  the manlpulator wlci be  able t.o 
maneuver  successfully in a constrained environment. In 
hls seminal work, Sallsbury justlfled  the  stlffness  matrix 
as the  representative  of a behavlor  that  manipulators 
must exhlblt whlle  they  are used as positlonlng  systems. 
The method  of  stiffness  control  offers  nelther assurance 
of  global dynamlc stablllty  nor a guarantee  of a spectfied 
frequency  range  of operation. 

Thls paper addresses the problem  of closed-loop 
control  of manlpulators, that operate in constralned 
environments, wlth  or  without  Interaction  force 
measurement, In the presence of bounded model 
uncertalntles. Central to  the approach Is the  notion of 
mechanlcal impedance (5-101 In frequency domain as a 
parametenzatlon of a ratlonal  set  of peformance 
speclfications t o  generate the compliant motlon  whlle 
preservrng  stabllity In the presence of bounded model 
uncertalntles. Preservation  of  the  stabrlity  of  the 
manlpulator  and the envlronment taken  together as a 
whole is also a fundamental issue in this design method. 
Our deslgn method IS an In-depth frequency-domaln 
approach of  Sallsbuy's  stlffness  control;  therefore, it IS 

consldered to  be  part   of   the second approach toward 
developlng compliant  motlon. 

3. BetlLltlon of CQmpliant  Motion in Control The0t-U 
In thls section, we  explain  [wlthout  gettrng  involved  in 

mathematics and design methodologies) points of  practlcal 
Importance In generatlng the compllant  motlori of a 
manlpulator. UJe start  with  conventional  controller-design 
speclflcatlons  concernlng the accommodatlon of  interectlon 
forces when the manlpulator IS not constrained.  Then we 
generalize  this concept t o  apply t o  sltuations In whlch the 
manlpulator  is constralned. Thls will  lead  us t o  
parameterize the necessary performance speclflcatlons in 
a simple mathematical  form In frequency domain. 

For the classes of  manlpulators  that  are  used as 
Posltloning systems, control compensators treditlonelly 
have  been designed so the system's outputs [positlor1 and 

2/10 

onentatlonl  follow  the commands, while  rejecting  the 
external forces. The two speciflcatlons 
Lcommand-followlng and  external-force  rejection1 
typlcally  require  large  loop gains for  the frequency  range 
In whlch the command input  and the  external  forces 
contarn the  most power. .Since commands and  external 
forces  usually  contain  low-frequency signals, 
command-following and  external-force  rejectlon 
properties  taken  together  establish a design speclfication 
at low frequencles. To achieve the  above  properttes  over 
a Large frequency  range IS not  tnvlal;  loop gains cannot be 
maae arbitrarily large  over  an  arbltranly wtae frequency 
range. A designer IS always  faced  wlth  certaln 
performance  trade-offs;  these  involve command-following 
and  external-force  rejection  versus  stability  robustness 
t o  hlgtrfrequency unrnodelled dynamlcs. The confllct 
between  these  two  sets  of  objectives is evident In most 
posltlonlng systems[ZI. I f  one designs a model-based 
compensator for  an  unconstralned manipulator, beanng In 
mlnd the obJectives of disturbance rejectlon  and 
robustness t o  model uncertainties, then  the closed-loop 
system wlll  operate accordlng to   the  specifled critena as 
long as the manipulator  travels inside the  unconstrained 
envlronment.  The  system wi l l   t ry   to   re ject   a l l   external  
forces and  reach  the assigned reference  input. However, 
once the manlpulator crosses the  bounday  of  the 
unconstralned envlronment ke., the manlpulator  Interacts 
wlth  the  envronmentl,  the dynarnlcs of  the system wll l  
change and stablllty  wlll  no  longer  be  guaranteed  with  the 
same controller. In fact,  the system is now likely t o  
become unstable. Even if stabilrty is preserved,  large 
contact forces rrlay result. Once the manipulator IS 

constralned, the compensator treats  the  lnteractlon forces. 
as disturbances and tries tg  r e j e d  them, t.hus causlng 
more  interactlon  forces  and torques.  Saturatlon, instablllty, 
and  physical  failure  are the consequences of thls  type of 
Interaction. But, In many 8ppliCatlOnS such external forces 
should  be accommodated rather  than reslsted. 

fin alternative to  external-force  re  lectlon anses If I' 
E DoEclble t o  @DeCl u t e lnteractlon  forces  aenerated ~r 
response t o  Imposed posltion. The desrgn objectlve is t o  
provide a stabllizlng dynamlc compensator for  the system 
such that  the  ratio  of  the  positlon  of  the closed-loop 
system t o  an  interaction  force is constant  within a glven 
operatlng  frequency  range. The above  statement  can  be 
mathematlcally  expressed  by equatlon 1. 

6D(jw) = K G Y ( j o )  for   a l l  O<w<w, Ill 

where: 
bD[jol = n x l  vector  of  deviatlon  of  the  Interaction 

forces  and  torques  from equilibnum value in 
the  global  carteslan coordlnate  frame. 

SY(JW) = nxl vector of devlation  of  the  interactlon p o r t  
posltlon  and  onentatlon  from  an equillbrlum polnt 

* In this  paper  force lmplles force  and  torque  and 
Posltlon  lmplles posltlon end onentatlon. 

- .  . 
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in the SiObBl cartesian coordinate frame. 

with constant members. 

J = complex number notation, fi 

K = nxn real--valued non-slngular stiffness  matnx 

w, =bandwidth  (frequency  range  of operatronl 

The StrffneSS matrlx (19) IS the designer's cholce that, 
depending on the applicatlon,  contains different  values  for 
each directlon. By speclfylng K, the designer governs the 
behavior of  the system in constrained maneuvers. Large 
members of  the K-matnx Imply large  Interaction  forces  and 
torques.  Small members of  the K-matllx allow  for a 
considerable amount of motion In the system in response 
to  interaction  forces  and  torques.  Stiffness values, in one 
sense, represent  the  type  of  behavior a  designer may wish 
a stable positlonlng  system to  exhibit. For example. if the 
system IS expected t o  encounter some physical  constralnt 
in a particular drrectlon, a stlftness  value may be  selected 
such that  the desired contact  force is ensured In that 
dlrectlon; In dlrections In which the system IS not  llkely  to 
meet  any physical constralnts,  a stiffness  value  with a 
proper  position set-point  must be  selected such that  the 
system follows  the desired reference input. Therefore, a 
Kmatrix can  be  formed t o  contain  stiffness  values 
appropriate for  different dlrections.  Even though a 
dlagonal  stlffness mat.rlx IS appeallng for   the purpose of 
statlc uncouplmg, the  Kmatnx IS not  restrlcted t o  any 
structure a1 this stage. Selectron of  the K-matnx IS 

consldered as the  first  item  of  the  set  of  performance 
specifrcatlons. 

The system  must also reJect the dlsturbances [If there 
are any). If disturbances [e.g.. force measurement noise) 
and  interactlon  forces  both  contain  the same frequency 
range [or even rf the  frequency  spectra  of  both slgnals 
overtap), then  the system In general cannot drfferentrste 
between dlsturbances and  the  Interaction  forces. Here we 
assume that  a l l  undeslrable  disturbances 8nd force 
measurement nolse act  on  the system at a frequency 
greater than on [see the grindlng example]. Fln analogy 
can  be  observed  in  tracking systems; if measurement noise 
and  reference Input  share some frequency SpeCtrUm, the 
system will  follow  the noise as wel l  os the  reference 
input, The reference  input must contaln components wlth 
frequency  spectra much smaller  than  the spectrum of  the 
measurement noise. 

Mechanical  systems are  not  generally  responsive to  
external  forces  at  high frequencies; as the  frequency 
Increases, the  effect of the feedback disappears 
gradually, depending on  the  type of controller used, untll 
the  Inertla  of  the system domlnates"rts- w 'e rs l l  motlon 
Therefore, depending on the dynamics of  the system, 
equation 1 may not  hold for a wide frequency range. I t  IS 
necessary t o  consider the specification of wn as the 
second Item Of the set of performance speclflcatlons. In 
other words, two independent rssues are eddressed by 
equation 1: first, 8 Slmpte relatlonship  between & D [ J ~ )  and 
6Y[Jw1 ; second, the frequency range of operatton, w,, 

such that  equation 1 holds tnJe. Besldes choosing an 
approprlate  stlffness  matrix, K, and a viable con, a designer 
must also  guarantee  the  stability  of  the closed-loop 
system. Therefore, stability IS considered to  be the  third 
Item of the  performance specrhcatrons. 

The stiffness  matnx, K, the  frequency  range  of 
operatlon, wo, and  the StaDIllty of  the  ClOSe~OOp system, 
form  the  set  of  performance speclficatlons. Note  that  thls 
set of performance  specifmtlons [stiffness, frequency 
range of operatlon, and  stability]  is Just a contemporaw 
and practical way of  formulating  the  properties  that  will 
enable  the  closectloop system to  handle  constrained 
maneuvers. The achievement of  the  set  of  performance 
speclficatlons IS not  tnvlal;  the  stlffness  of  the system 
cannot be shaped arbitranly  over  an  arbrtratg  frequency 
range. A designer  must accept a certaln  trade-off  between 
performance speclflcations  and stability robustness to  
model uncertalntles. The conflict  between  the 
performance specifications and  stability  robustness 
speciflcations IS evtdent in most closedloop  control 
systems. The set of  performance speclflcatlons and 
stabillty robustness  speclflcatlons taken 

Controller 
Design 
Speciflcatlons 

i 11 Stiffness  matrix, K 
'11 Performance 21 Bandwidth, W, 

specifications 31 Closed-loop stability 

-2) Stablllty Robustness Speclftcatlons 

Flgure 3-1: Controller Design Speclflcations 

together  establlsh a complete  set of controller deslgn 
speclflcations. Flgure 3.1 shows how thrs set  is categorlzed. 

Establfshing the  set  of performance  speclficatlons (K, 
o, ana  St8bilrty) grves desrgners u chance to express (at 
least  to themselves1 what  they wish to  have happen 
during a constrained manipulation  via o manipulator. Note 
that  the  set  of  performance speclflcations does a imply 
any choice of  control techniques. We have  not  even said 
how one mlght  achieve the set of performance 
speclfications. Such a set  only  allows designers to  
translate  thelr obJectlves lofter understanding the 
mechanlcs of  the  problem)  Into a form  that IS meanlngful 
from  the standpoint of  control  theory. 

3.1 Performance Speclflcatlons 
We are  looking for a mathematical  model  thst  will 

enable us t o  parametenze  the  three Items of the Set of 
performance speclficatlons ( K ,  w, and  stabllrtyl. The 
parametenzetlon must allow  the designer to speclfy the 
stiffness  matnx, K, end  the frequency  range of operation, 
wo, Independently, whlle guaranteeing stabllity. R11 such 
performance speciflcations can be mathematlcallg 
expressed by equation 2. 

&DIsl= I K + Cs + J s * 1 GYls), S-JW for all. O<w<o, (21 
[ K + cs + J s 2  1 = impedance 
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K, C and J are n x n real-valued  non-singular matnces. We 
use the  Laplace  operators In equation 2, to emphasize that 
the  entire  set  of  performance  specifications can be Shown 
by a linear dynamic equation in the time domain [see 
section 61. Proper  selection of  the  K-matrix a l l o w  
- m e r   t o  express  the  deslred.stlTf&s.s&lLe judmot& 

shoice of  the i n e m   m m x .  J. and  the d s m D i n a t r i x .  C, 
assures  the s c h i m e n t  of a, BELLI the s t a b U  of the 

To clarify  the  contributions  of J, C and K, conslder 
flgure 3-2, the  plot  of SVIJO~/SO[JOI from  equatlon 2 
when n = 1 and  the  system IS Slightly underdamped. 
SYIJWI/SDIJO~ remains very  close  to V K  for some 
bounded  frequency range. In  other words, the  plot  of 
SV[jwl/SD[jol approximately  exhibits  the  relationship in 
equation 1 for some bounded  frequency  range. 

Therefore, K In equation 2 parametenzes  the first rtem o f  
the  set  of  performance  specrfmtions.  Let  the  frequency 
range for which Inequality 3 is true  be a,, . 

I J $ ? + C s ( c p ( K I  s=,lo, n-1 131 

where (3 is a positive number less than one which merpsures 
how  close  the  proposed Impedance IS to  K. Note  thet  our 
only purpose In introducting p is t o  say thet for  the 
bounded  frequency  range IO,w,I, the Impedance In equatlon 
2 behaves  approxlmately  like  the K-matrix. p represents 
this  approximation  and  is  not a design parameter. I f  K is 
gwen, then w, and  the  stabiUty  of  the  system  [the  second 
and third items of the  set  of  performance speclflcations, as 
given  by  equation 21, depend  on J and C. In other words, 
the deslgner  can chenge ether J or C to  affect a, and  the 
stabilitu  of  the system. For example, for  a given K and C, 
decreasing J causes the  corner  frequency. m, and 
consequently w,, to increase. Changing J also  moves the 
elgenvalues of the system.  For a gwen  posltlve set of K 
and C, a negatlve J locates one eigenvalue In the 
nght-half  complex  plane, Whlle a positlve J guarantees 
that  both  elgenvatues  stay In the  left-half complex  plene. 
The dependence of  w, and  the  stability  of  the  system on C 
can be  investigated in a simllar way.  Because of the 
dependence of  wo and  the  stability  of  equatlon 2 on J and 
C. it can  be  shown  that  for a given K, there  exist many J 
and C such that  two  etgenvalues  of  the  system  are  elways 
In  the  left-half  complex  plane  and SY[jo]/SD(jw) remalns 
arbitrarily ClOSe to  l/K for  a l l  O<o<w,. We conslder J and C 
as two  factors  that  parameterize  the  second  and  third 

items  of  the  performance speeifrcatlons. I f  we  consider C 
as 8 parameter that only guarantees a stable and slrghtlg 
over-damped [or slightly under-damped1 system, then we 
can claim that J is the  only  effectrve  parameter  in 
lncreaslng  or decreeslng the  frequency  range of operat~on, 
wo, for  a given K. Slnce a heavy  system is alwags  slower 
than a llght system, a  large  target  inertla, J, lmplles a slow 
system h r r o w  a,J, while  a  small  target rnertra Implies .a 
fast  system Iwide 4 .  

The parametenzatlon  of the set  of  performance 
speciflcations  in  the case of more  than one dlmension IS 

similar to  the case Of when n = 1. Matrix K in equation 2 
models  the flmt Item of  the set of performnce 
speerflcations  because the  behevlor  of IK+ Cs+ Js2] 
approxlmates  that  of K for  some bounded  frequency  range, 
It can be  shown that  for a given  matrix K there exist  many 
J and C matnces such that  equation 2 offers a stable 
impedance and K+Cs+Js2 I IS close to  K for a l l  O<oia0. 
For  example. if J and C are  selected to  be yrK and d z ~  
[where $1 and 3'2 are  scalarsl,  then  the  charactenstlc 
equatlon of' eqUOtlOn 2 yields n uncoupled -secozld-order 
equation for  the  eigenvalues of the system. r l  and 2'2 
can be  selected Such that a l l  eigenvalues  are in the 
left-half complex  plane. The smaller y1 is selected to be, 
the  wlder O, wi l l  be. O f  course, thls may not  be  the  best 
way  of choosing J and C, but  It does show that  there eXlSt 
many J and C matnces such that wfth a proper K, equet(on 
2 models au three  items of the  set  of  performance 
specifications. Rgain, if we consider matrix C as a 
parameter  that  only  guarantees a stable  and  slightly 
overdamped  [or  sUghtly  under-damped) System. then we 
can claim that  matrix J is the  only  effective  parameter in 
tncresslng or decreasrng the frequency range of operatmn, 
a, , for B given K-matrix. The followlng IS a summary of 
the  parametenzatlon  of  the Set o f  performance 
speaflcatlons: 

stiffness  matnx ..................... > K; 
w, .................................................. > J; 
stabiUty ...................................... > C. 

At this  stage,  we  do not  restraln  matnces J, C and K to any 
structure. The only  restnction IS that J, C and K be 
norrslngular matnces. 

Equation 2 is not  the  only  possible  parameterlzation  of 
the  performance specifications. Simibnty  of  the  natural 
behavior  of  manlpulators  to  the form introduced  by 
equation 2 is one  reason  for  the choice of  the  second-order 
Impedance.  Ulrthln  some bounded  frequency range, 
manipulator dynamlcs are  governed  by  Newton's 
equatlons, whrch are  of second order  for each  degree  of 
freedom.  Practitioners often  observe  an  attenuatlon In 
frequency response tests  on  manipulators for  some 
bounded  frequency  range whrch can be  approximated  40db 
per decade. fit htgh  frequencies. other dynamics contribute 
to  the dynamic behavior of  manipulators. We chose a 
secondorder Impedance because  of  thls dynamlc mlI.8nty. 
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Section 5 and 6 etiplain some properties of  the 
second-order Impedances. Throughout this paper,  equatlon 
2 is referred  to as the  target dynamics. Other forms  of  this 
equation are  presented In Sectlon 6. 

Here, we use an example to  I l lustrate a potentral 
difficulty  wlth  matnx J. Conslder a dlagonal  K-matnx. If 
K IS chosen so that K=dlagIk,,k2. ..., knl,  then 
J=dlag[jl,J2, . . , j , I  and C=d~ag(c~,c~, ..., c,) can be selected to  
guarantee  that each channel has the deslred frequency 
range of operation.  Even though K IS selected to  be a 
dlagonal matrix t o  ensure uncoupllng, there  exlst  an 
lnflnlte number of  Jmatnces  (not necessarlly dlagonal.) 
that  can  guarantee  thls uncoupllng for  the deslred 
frequency range o f  operation. Thrs IS true because Js2 IS 

effectlve  only  at hlgh  frequencies (w>ool;  f o r   a l l  Ococw,, 
K plays  the most important  role in determining the 
response of the system. The size of J IS Important,  not  its 
structure. O f  course, the  diagonal  structure for- J makes 
its  selection much easler. As stated  eartler, IK+Cs+Js21 
remalns very  close t o  K for  some boundeu frequency 
range, O<w<w,. For a l l  Oco<w,, (K+Cs+Js21 behaves 
approximately  llke K, and the  contact  forces  that  are 
generated In response to  those components of  the Imposed 
positron GY( jw1 that  l ive in the  operatmg region OCWCO, 
are  approximately  equal t o  KGY[JwI, whlch is nearly 
independent of J. [Of course, the response of  the system 
outside  the  frequency  range of operatlon Ioo(o(ool 
depends on J.1 On the  other hand, wo establrshes the 
frequency  range In whlch the Slze of K IS much larger  than 
Js2. Dependence of  a, on  the size of J and the 
independence of the system's response from J, show that 
the slze of J is  important and not  its  structure. [One can 
conslder the slze of  the  &matrix in terms  of  its  singular 
values.] A diagonal or a non-dlagonal J is equally  suitable 
for an Impedance as long as the, size of  the  matrix 
guarantees that GD[~w]zKGV[~wl'for a l l  O(w<w,, In Part 
2 of this paper (Reference 241 we will arrive  at a 
non-dlagonal J. whlch can guarantee an uncoupled 
stiffness for O<o(w, without  any  force measurements. 
See Part 2 (reference 241 of this paper for a dlscusslon of 
the  selectlon of the  Amatnx. 

Some Comments: By speclfylng the matnces J, C and 
K, a  designer  can mOdUl8te the lmpeaance of the system. 
Our primary goal IS to  achleve a certaln  set  of wo and K In a 
stable sense. Equation 2 happened to  be a suitable  target 
dynamlcs that can model  our  supenor  performance 
specifications IK, wo and  stabilrtyl. We do not consider J, C 
and K as our pnmary  performance speciflcatlons. J, C and K 
have 3n2 members and  amving st some V8lUeS for a l l  
members of  matnces J, C and K independently, wlthout 
paylng attention  to  thelr  affects  on wo and K IS an 
unnecessary overspecificatlon of a peformance  critena. 

I f  a manlpulator  is in contact  with  its environment  and 
a new reference  point is commanded Ie.g., by a supervlsor-y 
programi, then, since the  parameters  of  the impedance In 
Equatlon 2 are  under  control,  the resul.tIng lnteractlon 
force  on  the system WILL also be under control. This means 

that  the  controlled manrpulator wlt l  behave  llke a system 
that accepts a set  of  positlon ana onentatlon commands 
and  reflects a set of forces and  torques as output. This is 
the  fundamental  charactenstic  of  our method. In other 
words, thls  method  always  allows  for closed-loop 
positionlng  capabilities. (See Figure 511. Stlffness control 
I191 also offers  thls charactenstlc. By asslgnlng dlfferent 
posltlon and  onentatlon commands and by malntalnlng 
complete  control In equation 2, a deslgner can  achleve the 
deslred contact  forces  and torques. Note  that we st111 
have a posrtioning system for  the  manipulator  with  the 
ability to  modulate  the impedance of  the system. The 
terminology "Impedance Control" (101 which is used in 
Literature  is  incorrect  and misleading from  the  standpoint 
of  control  theory  [even  though It has been wldely used]. 
We do not  control  the impedance, we sti l l   control  the 
posltlon  and orientation of  the manlpulator;  we only 
modulate  [or ad~ust l   the Impedance. 

Equstlon 2 In the tlme-domaln can  be descnbed by 
equation 4. 

J &( t l  + C G'?[tl + K 6 V [ t )  = 6 D[t) (41 

J, K and C are non-singular matrices. 8Wl and  8DItl  are 
n x l  vectors. Even though we  use the time-domain 
representatlon  of  the  target dynamics in our deslgn 
method  (part 2 of thrs paper ,I reference2411, we plan to 
Quarantee  the achlevement of the  target dynamlcs In the 
frequency domaln. We also  select  the  parameters of 
equatlon 2 to  guarantee  the deslgn speclflcatlons In the 
frequency domaln. Selection of J, C and K to  represent a 
frequency-domaln deslgn speciflcation implies shaping the 
steadg-state  behavror of the system in response t o   a l l  
frequency components of  the imposed motion command. 
An alternative approach is t o  specify J, C and K to  
represent some deslgn speclflcatlons In the t~me-domaln. 
The tlme-domain representetlon of  the  target dgnamlcs 
wlthout specifylng the tlme-domaln representatlon of  the 
Input does not express an adequate target dynamlc model 
for  the manipulators. One must also specify the 
time-domain representation  of  the  input  to  the system 
along  the tlme-domaln representatlon  of  the  target 
dynamics. For example, it is  clear  that a manlpulator wl l l  
not  behave accordlng to  equation 4 In tlme domain If a IOO 
hertz periodlc force Input IS Imposed on a mampulator. 
Thls IS true because a l l  of  the  hlgh  frequency  structural 
dynamlcs of  the system will  contnbute  to  the  motlon of 
the system, and equatlon 4 wil l  no  longer  be  an adequate 
representatlon  of  the  target dynamics of  the system. In 
many manipulators  the dynamics of  the system  cannot be 
shaped in  the  time domaln as equation 4 even.for % step 
Input force functlon. Note  that  the conditlon, Ocw<w, , In 
equation 2 assrgns a restriction on the components of the 
inputs to   the  system. In other words, we do specify the 
type of Input for  the proposed impedance In equation 2. 

3.2 Stabllfty Robustness Spectficalfons 
The stablllty robustness  speclflcatlons  anse from  the 
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exlstence of model  uncertalntles (16, 121. The model 
uncertamties fa l l  into two classes. Lack of  exact 
knowledge  about the parameters  of  the  modelled 
dynamics le.$)., the  inertia  matrlxl  constitute  the  first class 
of model uncertalntles. HiQh frequency  unrriodelled 
dynamics lsuch as bending or  torslon dynamics of  the 
members] form the second class of unmodelled dynamlcs. 
Note  that  the  model  uncertalntles  of  the second class 
generally  give  rise t o  modelling  errors  only st hlgh 
frequencies, whlle  the  model  uncertainties  of  the  flrst 
class  can  contribute t o  modelling  errors  at a l l  frequencles. 
If the compensated  system does not  satisfy  the  stablllty 
robustness speclflcatlons, the system may not become 
unstable. Thls IS true because our  robustness  test IS a 
sufficlent  condltlon for  stabtlrty.  Satlsfactlon of  the 
robustness  test  guarantees  stability,  while  the  fallure  of 
the robustness  test does not  necessarily  imply  instability. 
If one cannot meet  the  stability  robustness  specifcations 
a t  high frequencies, it is necessary t o  consider the 
hlgher-order dynamlcs (If at a l l  posable] when modelllng 
the system. Adding the hlgher-order dynamlcs to  the 
system allows  for  weaker  stability  robustness 
speclflcatlons at hlgh frequencles, I f  hlgher-order 
dynamrcs cannot be determined, It IS necessary t o  
compromise on  the  set  of  performance speclfications. A 
small w, WIU allow designers t o  meet strong  sets  of 
stablllty  robustness speclflcatlons at high frequencles. On 
the  other hand, wrth a very  small o,, stablllty  robustness 
t o  parameter  uncertaintles may not be  satlsfled. Thls IS 

true because stablllty  robustness to  parameter 
uncertalntles assigns a lower  bound  on wo. To achle6e a 
wlde w,, a designer should  have a  good model of  the 
manlpulator at high frequencies [and consequently.  a weak 
set  of  stabrlity  robustness specifications at  high 
frequenclesl. Because of the  confllct  between deslred wo 
and  stablllty  robustness to  hlgkfrequency dynamlcs, It IS a 
struggle  to meet both  sets  of specificatlons for a given 
model  uncertalnty. The frequency  range of operation, a,, 
cannot be  selected to  be  arbitrarily wide If a good model 
of  the manipulator does not  exlst a t  hlgh frequencies, 
while a good model of  the  manipulator  at high  frequencies 
makes it possible to  retain  the  target dynamics for  a wide 
0,. The relatlonshlp  between o, and  stablbty  robustness 
wlll  be  presented In Part 2 I Reference 241 of thrs paper. 
Even though wo IS the maJor candidate that can be used to  
compromise agalnst stablllty  robustness speciflcatrons 
there  are  other freedoms in design technique that 
sometimes can  be  used for  the same purpose. This wiU be 
clanfled n Part 2 of thls paper. 

4. W e s  of  Ap-llant Motlon 
The folbwrng examples tltustrate some appllcatlons 

o f  impedance control. For the purpose o f  understanding 
the  application o f  this  theoiy,  the  problems in these 
examples are simplifled. 

Grlndlng. Conslder the grlnding o f  a surface by  a 
manlpulator; the  objectlve IS t o  use the  manlpulator to  

smooth the  surface  down  to  the commanded trajectory 
represented  by  the dashed line I121 In Figure 4-1. Here we 
give  an approach In which thls task IS performed  by a 
manipulator. It is intuitlve t o  deslgn a closed-loop 
positlonlng  system for  the  manipulator  with a Large 
stiffness  value in the R-dlrectlon and a low  stiffness 
value in the T-direction. 

Figure 4-1 a: Gnndlng a Surface vla a Manlpulator, b: Peg 
in Hole 

In many tasks, it IS beneflcial t o  produce the compllant 
motion in an  active  end-effector  with a few degrees of 
freedom  instead  of produclng the complrant motlon for  the 
entlre am. FI large  stiffness  value in the R-directlon 
causes the  endpoint  of  the  manipulator  to reJect the 
external forces and  stay  very  close to the commanded 
traJectory (dashed lmel. The larger  the  strffness of the 
manipulator in the R-direction, the smoother the  surface 
wil l  be. Given the  volume  of  metal  to  be  removed,  the 
desired tolerance In the R-direction prescribes an 
approxlmate value  for  stlffness In the R-dlrectlon. The 
force necessary to  cut In the T-dlrectlon at a constent 
traverse speed IS approxlmstely  proportlonal to  the 
volume of  metal  to  be  removed (11. Therefore, the  larger 
the "bumps" on the surface, the  slower  the manrpulator's 
end-polnt must move In the T-directlon. Thls IS necessary 
because the  slower speed of, the end-point along  the 
surface Implies less  volume of  metal  to  be  removed  per 
unit of tlme, and consequently, less  force In the 
T-dlrectlon. To remove  the  metal  from  the surface, the 
manlpulator  should  slow  down In response to  external 
forces  resulting  from  large 'bumps." The above 
explanation means that it is necessary for  the  manipulator 
t o  accommodate the  interaction  forces  along  the 
T-directlon, whlch directly implies a small  stlffness  value 
in the T-direction. I f  a designer does not accommodate 
the  lnteractlon  forces  by speclfylng a snlall  stiffness  value 
In the T-dlrectron, then  the  lsrge "bumps" on the surface 
WILL proauce large  contact  forces In the T-dlrectlon.  Two 
problems  are assoclated with  large  contact  forces In the 
T-direction: the  cutting  tool may stal l  [if it does not break); 
a slight  motlon may develop In the manipulator's end-point 
motion  along the R-directlon, which  mlght exceed the 
desired tolerance. A small  value  for  stlffness in the 
T-dlrectlon [relatlve to   t he  stlffness In the H-dlrectlon) 
guarantees  the deslred contact  forces In the T-dlrectlon. 
The rougher  the  surface IS, the  smaller K must be In the 
T-dlrectlon. The frequency spectrum of  the roughness of 
the  surface  and  the desired translational speed of  the 
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manlpulator end-point along  the  surface determine the 
frequency  range o f  operation, e. Given the  stlffness in 
both directions,  a designer can arrive  at  proper  values  for 
J and C to  guarantee o, and stablhty. A t  each polnt on  the 
traJectory, a controller must be modlfled In the Joint-angle 
coordinate  frame such thai  the  desied  target impedance 
of  the  form In Equatron 2 IS achieved in  the  global 
coordinate  frame. The rotation of the  cutter causes some 
high-frequency  dlsturbances In the manlpulator. The 
contact  force measurement IS also noisy. oo must be 
selected t o  be  lower  than  the  frequency  range  of  the 
cutter disturbances and  the  force measurement nolse. The 
satlsfaction of equation 2 prevents  the system from 
responding t o  these dlsturbances and noises. 

Peg-in-tfole. The peg-ln-hole task IS generlc t o  many 
assembly  operations such as inserting a rod  Into a hole  or 
a computer board  Into a slot.  There  are many strategles 
for  this task (for an  example see reference (221 I; most 
assume that  the  manlpulators  are capable of producing 
compllant motion. We are  not  glvlng a complete solutron t o  
the  pegin-hole problem, but Just a simptifled  example t o  
illustrate  the use of  this  method  in such maneuvers. Once 
the  peg IS located  at  the  position shown In Figure 4-l-b, a 
small  stiffness in the X-direction must be selected. I f  
there IS any mlsallgnment between  the  peg 8x1s and the 
hole axls, a small  stlffness In the X-directlon causes the 
manlpulator end-polnt to  allgn  itself  wlth  the axls of  the 
hole. If the  stlffness In the X-dlrection IS large, the 
manlpulator  endpoint  wlll  not  move in the X-direction, and 
large  contact  forces  will  result. R large  stiffness  must  be 
selected for  the Y-direction to guarantee a  posltloning 
system that wil.1 reject  the  fnctlon  forces  in  the 
Y-drrectlon and  Insert the peg Into  the  hole 

5. Global Stebllity of  the  Taraet Ownemrcs 
We conslder two Issues of importance In analyzlng  the 

stability  of  the  manipulator  that  interacts  with  the 
environment. The first issue concerns the condltion under 
which equation 2 offers a stable  target dynamlcs. The 
stability  of  the  target dynamics is not enough to  assure 
the  stablllty  of  the  manpulator and It.s,envlronment taken 
as a whole. Thls brings up  the second Issue: the  gtobbl 
stability  of  the  manlpulator  and  its environment. 

The target dynamics of a manlpulator must be  stable. 
Note  that  stabllity is not a condition for  achievability. [See 
Part 2 of this paper  [Reference 241.1 Stablllty of the  target 
dynamics depends on  the  values  of J, C and K. One 
sufficient condltion for  the  stablllty  of  the  target dynamlcs 
IS glven  by Theorem 113,4). 

Theorem 1. I f  J, C and K are real and SymmetnC, 
positive  deflnlte matrices, then  the system In equation 2 is 
stable, and If C and K are symmetnc, normegatlve  definite 
matrices, then  the  system in equation 2 will be  marginally 
stable. I f  K and/or C are symmetnc, posltlve, sernl-deflnte 
matnces, then some or a l l  eigenvalues wlll  be  on  the 
lmaglnay 8x1s. [These cases are consldered  unstable.) 
Note that  the conditlons on J, C and K are  sufficient  for 

stability,  but  not necessary. We mlght amve  at  a set  of J, 
C and K that assures stabillty  wlthout  satisfying  the 
theorem conditlon. The stability  of  the  target dynamics Is 
not enough t o  assure stability of  the  overall system of 
the  manlpulator and Its envlronment. In other words, the 
following question  cannot be  answered  by  this theorem: I f  
a manlpulator  wlth a stable impedance as expressed by 
equation 2 is In contact wlth a stable envrronment, does 
the system of  the  manipulator and its environment  remaln 
stable? This is  not clear; two  stable systems interacting 
wlth each other  may  result in an  unstable system. The 
following  theorem is needed for  the  rigorous assurance of 
the  Overall  stsblllty of the manlpulator  and Its 
envlronment: 

Theorem 2. If the closed-loop dynamlc behavlor of 
the  manlpulator IS glven  by  equation 5 

J 6i.'[tl+C6(i[tl+K6Y(tl= 6DN, 6D(tl and GYItIER (51 
J = J T> 0, K = K T> 0, C = ET> 0; 

and i f  the environment is  a system wlth the dynamlc behavlor 
represented by equatlon 6 

Je Gi.',[tj+  Ce6'?,[tl+ t@Ye[tl = 6 Deltl+ 6 D:(tl [61 

6De(tl, sD:(tJ and 6Ye[tJERm 

J,= J:> 0, K, = hT> 0, Ce GT> 0; 
where: 

6 De[tl = the  force  that  the  manipulator  exerts  on  the 
envlronment; 

6 ~$( t ]   -a l l   o the r  foces on the envlronment [uncorrelated 
wlth  the manrpulator states and  environment 
states]; and 

6 D[t) - t he  environmental  force  on  the manipulator, 
then  the  overatl system (manipulator and env~ronmentl IS 
stable. The Proof IS given in Appendix I. 

According to this theorem, ~f J, C and K are  selected as 
symmetric, positwe  definite matrices, the  overall system 
of the  manlpulator  and  Its environment taken  together Will 
yleld eigenvalues In the  lef t  complex  plane. Note  that this 
theorem  guarantees the  global  stability Of the 
manipulator and the environment  taken as a whole, if the 
manipuletor  behaves accordlng to  equation 4. If the 
controller does not achieve the  target impedance exactly, 
but  results In a controlled 

commanded 
incremental 
posltton 8.8.; 1 5  1 p0lsl ''r"'-7 - Jg, 2 + c s + h: 

Erwironment Oynamlc.: 

Figure 5-1: The lnteractlon  of  the  manlpulator  and the 
environment In the  ideal case when the  target impedance 
Is achreved for   a l l  O<~,,<oo. 
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behavlor  "approximately"  like  the  target dynamics for a 
bounded  frequency  range,  then  the  above  theorem does 
not  guarantee  the  global  stability. The importance  of 
theorem 2 IS that it shows that  the  target impedance has 
deslrable  propertles.  The  block diagram In Flgure 5-1 shows 
how the  manipulator  and  the  environment  Interact  with 
each  other in an  ideal case when  the  target impedance is 
achieved  for a l l  O < o C = .  6Y1sl is the Imposed position  on 
the  manipulator which consists  of  the  algebraic  addition  of 
the commanded Incremental  posltion  and  the 
envlronmental positlon. 

8. Qxmetrlc Prnpertles of the Tar- 
Since a geometnc  approach is being consldered for 

compensator  design  [Part 2 of this  paper [Reference 2411, It 
is necessary to  identify  the  eigenstructure  properties  of 
the  target dynamics. The target dynamics that  correlate 
interaction  forces  with  system  posltlon  are  glven  In 
state-space  form  by  equations 7 and 8. 

I"'"! 8V(t] = - J ' K  - J ' C  Irn ] rltl] 83[t I  4 [SI 8DIt) (71 
w w 

At Bt 

181 

c, 
At = 2nx2n, 4 = 2nxn, C, = nx2n 
and also: GJsl- [J E? + C s + K I-'- C, I sIznzn-F+ I-' & 

G&l Is the  transfer  function  matrix  that maps the 
Interaction force  to  the  end  polnt  poatlon, IGt[s) IS the 
deslred  target  transfer  functlon matrix.1 The advantage  of 
this form IS that it enables a designer to  descrlbe the 
target dynamics of a system in geometrical  terms. 
contalns  lnformatlon  concemrng  the modes (elgenvaluesl 
and  the  relative dlstribution of the modes Le~genvectorsl 
among the  states. The target dynamlcs In equation 2 Imply 
a closed-loop behavlor  for  the  manlpulator in the 
frequency domain. Our goal is t o  make the  manlpulator 
behave accordlng t o  equation 2 fo r   a l l  O c o c q , .  Note  that 
in general  the  closedloop  behavlor  of a system cannot  be 
shaped  arbltranly  over  an  arbltrary  frequency  range. The 
tlme-domaln presentatlon  of  the  target dynamlcs In 
equation 7 and 8 offer a set of eigenvalues  and 
etgenvectors t o  model  the  Internal dynamlc behavtor of 
the  target dynamics. Each ergenvalue  of  the  target 
Impedance, hi, and  Its  corresponding  right  eigenvector, z,, 
can  be computed  from  equation 9. 

Substituttng  for Rt from  equatlon 7 In equatlon 9 Bnd 
solvlng  for zi results in equetion 10 

1101 

where: [ J A,* + CA, + K) q, - o,,, si*%, I= 1,2, ..., 2n 1111 

The Impedances that  always  geld a compl-ete set of 
eigenvectors  are  called slmple 14, 13,111 *. In other words, 
slmpte impedances guarantee a complete  set  of 
eigenvectors,  desplte  the  multiplwty  of  thelr eigenvalues. 
Equations 7 and 8 represent a sti3tespaCe  relatlonshlp 
between  enctpolnt  position  and  interactlon  force in the 
global  coordlnate frame. The transformation  of  the 
endpoint position  from  the  global  coordinate  frame to  the 

Jolnt-angle coordinate  frame  is  given In reference (211; it 
results in the  following equation: 

s y [ t l -  J, se[tl 1121 

where J, IS the Jacoblan of  the  matrlx  that  transforms 
Jomt-angle coordinates to  global  coordlnates. Equatlon 2 
represents a dynamlc behawor In the nelghborhood of  en 
equllibnum  point; 6D(t) and 8Wtl  are  small  increments 
away  from  an  equilibrium  point [a point  with  zero  speed In 
space]. Knowing this, we can write: 

8'?[tl = J, 8&t l  1131 

If vI is the  right  eigenvector of the  target dynamics in  the 
Joint-angle coordlnate frame, then: 

vi = [On,, J;'] [AIJL'q,l 

the 2n  eigenvectors  of  equatlon 14 form a 2n  x 2n matrix V: 

JC' Onn J,-l q, 
Jo is noksingular 

v = 1 V I  v2 ..... Vzn1. (151 

V is a besls for  the  stete-space  representatron  of  the 
target dynamlcs in the Jolnt-angle  coordinate  frame. V 
shows how the  desired modes are  coupled among the 
states  of  the  target dynamlcs. The 2n  eigenvalues 
resulting from equations 9 or 10 are  invariant  under  any 
linear  transformation  and  form a self-conjugate  constant 
Set A4Al:i=l,Z,.,,, 2nl. A and V taken  together describe the 
elgenstnrcture of the  deslred Impedance In  the Jolnt-angte 
coordlnate frame. For slmple Impedances, V is a full rank 
matnx. 

* If [J&CA+K) has  degeneracy  equal t o  the 
multipticity  of  elgenvalue h, In equation 11, 
[JA~+CA+KI is a  simple impedance. If J, C and K are 
symmetric positlve  definite  matrices,  then 
[Jh2+Ch+Kl is a simple impedance.l4,13,ll~ 
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7- Conclusion 
We started  with  conventlonal  controller deslgn 

specrfications concemrng the  treatment  of  the  lnteractlon 
forces and torques when the  manipulator IS not 
constralned.  Generalmng thls  treatment to  Include cases 
when  the  manlpulator IS constrained,  we stated a set  of 
controller deslgn specificatlons to  assure cornpliant motion 
wrth stabillty  In  the presence of bounded uncertalntles 
[Figure S I ) .  One of  the  most  Important  contributions  of  thls 
paper IS the  formulation  of  the concept of compliant 
motion  in  terms of a meaningful  set of  controller deslgn 
specifications. This set [shown in Flgure 3 1 1  IS a proper 
deflnltlon  of  the compllant motlon. Equation 2 can 
parametenze  our  set  of  performance speciflcatlons. The 
followlng IS a summary of  the  parameterization  of  the  set 
o f  performance specifrcatrons: 

strffness  matnx ..................... > K; 
wo .................................................. > J; 
stability ...................................... > C. 

We assume C to  be a matnx  that  always produces a 
sllghtly overdamped or underdamped stable system; 
therefore,  for a given  Kmatnx,  the  Jmatrlx is the 
parameter  that  affects w, the most, and many Jmatrices 
can  parameterize q,. In particular, we clam [and we WILL 
show in Part 2 (Reference 2411 that a wlde wo [or a small 
Jmatr lx l  may cause Instability in the presence of hlgh 
frequency  unmodelled dynarnlcs. The stablllty  of  the 
target Impedance and i ts global  stabrllty  wlth  the 
environment result  from  the  appropnate cholce of  the 
target dynamlcs and  not  the  deagn  methodology. 

I.  Rppendlx 1 
EQQ€. Since the  manipulator is in contact  with  the 

environment, vectors 6Yltl and 6Y,[tl mlght have members 
In common.  Form a p-dlmenslonal vector W[tl  such that 
equatlon 16 and equation 17 are  satlsfled in + m 2 PI. 6lurtl 
Is a vector  that contains a l l  states  of  the  manlpulator  and 
envlronment. Slnce the  manipulator and  envrronment are 
in contact  with each other, 6Y,tl and 6Yltl  wlll  have some 
common members. The flrst [ p n l  members of 6Ult1 are 
those  states  of  the environment that  are  not  states  of  the 
manlpulator, The last [p in]  members of W t l  are  those 
states  of  the  manlpulator  that do not  represent the 
envrronmental dynamics. 

6Y,[tl = T, 6Wltl (161 
6Yltl- T, 8WItl I171 
T, and T, arem x  p  and n x p matrlces wrth 0 and 1 as their 
members. Substltutlng for  6V,(t) and 6Y[t)  In equations 5 
and 6 results In equatlons 18 and 19. 

J T, &JItl + C T, 6dItl + K T, 6W[tl=  NI[t) (181 

J,T,G'Jijtl +C,T, 8 d I t l  + K,T, 8UJItI = SD,[tl 't 8D,O(l] 119i 

Because of  the  lnteractlon  between  the  manlpulator and 
the envlronment, equatlon 20 IS also true. 

Ty '  8DltI = -T,S 6D,[tI (201 

Omittlng 8 D W  and 6D,[tl from equations 18 and 19 by means 
of equatlon 20 results In: 

[T: J T, + T: Je Tel 66(t) + {Ty '  C T, + T: C, Tej8d(t j  + 

(TYr K T, + TeT K, T,] 6W[tl = TeT 6D,0[tl [21) 

It can be verified  that: 

[T; J T, + TZ Je T,1 = a symmetnc, positive  definite  matrix; 
IT: C T, + TeT C, T,l= a symmetnc, posrtlve definite rnatnx; 
IT; K T, + TZ K, Tek a symmetnc, posltlve  deflnlte  matnx. 

FIccording to Theorem 1. equation 21 [which shows the 
dynamlcs of  the  manipulator  and  the environment1 is 
stable. Accordlng to  thls theorem, If J, C and K are 
selected as symmetnc, positrve deflnlte matnces, the 
overal l  system of  the  manlpulator  and  Its envlronment 
taken  together  wili  yleld elgenvalues In the  left  complex 
plane. 

Note  that  this  theorem guarantees the  global  stability 
of  the  manipulator  and  the environment taken as a whole, 
if the  manipulator  behaves according to  equatlon 4. The 
block dlagram In Flgure 1-1 shows how the  manlpulator  and 
the environment Interact  wlth each other in an  Ideal case 
when the  target Impedance IS achleved fo r   a l l  O(o(m. 
6 Y ( s )  IS the imposed position on  the  manlpulator whrch 
consists of  the algebraic  addition of  the commanded 
incremental  position and the  environmental position. I f  the 
controller does not achreve the  target Impedance exactly, 
but  results  in a controlled  behavior  "approxlmately"  like 
the  target dynamlcs for a bounded frequency range, then 
the  above theorem does not  guarantee  the  global 
stabllity. The Importance of Theorem 2 IS that  it snows 
that  the  target Impedance has  deslrable propertles. The 
resulting impedance when the  target dynamics is achieved 
only  for a bounded frequency  range can be shown as: 

IJ S2 + CS + K 1 I I,, + EJsI I m 
where Et(sI shows the  dlfference  between  the achievable 
target dynamlcs and the  Ideal  target dynamlcs. The 
closec-loop comblnatlon of  the  manlpulator  and  the 
envlronment, considering expression 22, is shown In figure 
1-2. The global  stabillty of the system in Flgure 1-2 IS no 
longer  guaranteed by this theorem. Using the  result in 
references (14,131, the closed-loop  system in Figure 1-2 wi l l  
be  stable If the  lnequallty 23 IS satlsfled  for a l l  O < a c o o .  

urn( I, + (Js' +Cs + KT' [T, G,[SIT:]-' > G,,, (EJSI) 1231 

where: &[SI = IT:J,T, E? + T: C, Te s + T:K,TeI-' 
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Flgure 1-1 The lnteractlon of   the manlpulator  and 
envlronment In the  ideal case when the  target impedance 
Is achieved for a l l  OCwcoo. 

6 0 I, 2. I 

Flgure 1-2: The interactlon of  the manlpulator  and  the 
environment when the  target Impedance Is achieved for 
some bounded frequency range. 
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