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1. Aﬁ;mg;

anipulators are subject to interaction forces when
they maneuver In a constrained work-space. Our goat 1s 10
develop s method for the design of controllers of
constrained manipulators in the presence of model
uncertainties. he controller must carry out fine
maneuvers when the manipulator is not constrained, and
compliant motien, with or without INteraction-force
measurement, when the manipulator is constrained. At the
same time stabiutt; must be preserved If bounded
uncertainties are allowed in modelling the manipulators.
Stability of the manipulator and environment as a whole
and thé preservation of stabitity in the face of changes
are two fundamental issues that have been considered in
the design method. We start with conventional
controller-design specifications concemning the treatment
of external forces when the manipulator is not
constrained. Generalizing this concept (o include cases
when the maniputator is constrained, we state a set of
gracticat desigh specifications In the frequency domain
hat 1s meaningful from the standpoint of control theory
and assures the desired compliant motion In the cartesian
coordinate frame and stability in the presence of bounded
uncertainties. This approach also assures the globsl
stability of the manpulator and its environment. While this
paper concerns the fundamentals of compliant motior,
part 2 of this paper [Reference 24| is devoted to the
controller design method.

2. Introduction
For a broad class of manipulators under closed-Loop
control, fundamental differences in behavior and

controller design complexity can be attributed to two
types of maneuvers: unconstrained and constrained. In
the first case, the manipulator is driven In its work-space
without contact with the environment. Note that the
environment might exist in the manipulator work-space
without imposing any constraint on the maniputator motion,
In constrained maneuvers, the manipulator is driven in its
work-space so that the environment continuously exerts a
dynamic or kinematic constraint on the manipulators
motion. Spray painting by a maniputator is an example of
the first class of maneuver. The end-point of the
maniputator travels through certain points in its
work-space without any restriction.  On the other hand,
inserting a computer board in a slot (l.e.. the peg-in-hole
problem] or tuming a crank by means of &8 manipulator are
examples of constrained maneuvers; the end-point of the
manipulator is in contact with the environment and cannot
move in all directions. A dynamic maneuver such as
leading a manipulator in a free environment towsrd 8
metal surface and then grinding the surface may consist of
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both types of maneuvers. Our classification of maneuvers
as unconstrained and constrained is similar to the
classification introduced by Whitney {20}, who categorized
maniputations into  “rearrangement” tasks s&nd “force"
tasks. This paper deals with constrained maneuvering.

In constrained maneuvering, the interaction forces
must be accommodated rather than resisted. If we define
"compliancy” as g measure of the ability of a manipulator
to react to interaction forces and torques, we can state
our ob jective as: to assure compliant motion in the global
cartesian coordinate frame for manipulators that must
maneuver in- constrained environments. Previous
researchers have suggested two approaches for assunng
compliant motion for maniputators. The first approach is
gimed at controlng force ({torque} and position
[orentation)in 8 non-conflicting way. In this method, force
{torque) is commanded atong (about) those directions
constrained by the environment, while position
(orientation} is commanded along (about} those directions in
which the maniputator 1s unconstrained and free to move.
The second approach is aimed at developing a retationship
between interaction forces and manipulator position. By
controtung the maniputator position and specifying its
relationship to the interaction forces, a designer can
ensure that the maniputator will be able to maneuver in a
constrained environment white maintaining approprate
contact forces.

The first approach was motivated by several studies.
Paul and Shimano (16 partitioned the motion of a
manipulator into position- and force-control in & global
cartesisn coordinate frame. Then, with the help of &
decision-making "togic” hidden in 8 supervisory computer
program, they armved at the two sets of actuators that
could best contribute to the position control Loop and the
force control Loop. Railbert and Craig (17) also partitioned
the motion of the manipulator In a global cartesian
coordinate frame. They used & position controtler to move
the maniputator in unconstrained directions and a force
controtler to push the manpulator sgamst the
environment with the desired contact force. They then
amved at input values for the actuators {without assuring
stability) such that all actustors would contribute 1o both
partitions.  Whitney {20} armved at & single-loop
velocity-control scheme with the net effect of controlling



the contact force. Similar work In the generation of
compliant motion has been done by Mason (15, and Wu and
Paul {23). Common to all such methods for ensunng
comptiant motion is the dependence of the controller's
structure on both the kinematics and dynamics of the
maniputator and of its environment. For example, if the

end-point of a manipulator travels from one constrained -

point to another such that the environment at the new
point exerts constraints that differ from the constraints st
the first point, then a new controller with & different
structure must be designed to accommodaste the new
constraints. In the second approach toward generating
compliant motion, 8 relationship 1s defined between the
position of the manipulator and the interaction forces.
Salisbury (19) started by defining a linear static function
that relates interaction forces 1o end-point position via a
stiffness matrix in a cartestan coordinagte frame.
Monitoring this ' relationship by mesns of a computer
program ensures that the maniputator wii be able to
maneuver successfully in a constrained environment. In
his seminal work, Salisbury justified the stiffness matrix
as the representative of a behavior that manipulstors
must exhibit white they are used as positioning systems.
The method of stiffness control offers neither assurance
of global dynamic stability nor & guarantee of a specified
frequency range of operation.

This paper addresses the problem of closed-oop
control of manipulstors, thal operale in consirained
environments, with or without interaction force
measurement, in the presenceé of bounded model
uncertsinties. Central to the approach i1s the notion of
mechanical. Impedance (5-10] in frequency domain as &
parameterization of & rationst set of peformance
specifications to generaste the complisnt motion while
preserving stability in the presence of bounded model
uncertainties.  Preservation of the stability of the
manipulator and the environment taken together as &
whole is also a fundamental issue In this design method.
Our design method 15 an indepth frequency-domain
approach of Salisbury's suffness control; therefore, it is
considered 1o be part of the Second approsch toward
developing compliant motion.

3. Definition of Compliant Motion In Control Theory

In this section, we explain {without getting involved In
mathematics and design methodologies) points of practical
importance In genersting the compliant motion of &
maniputator. We start with conventional controtier-design
specifications concerning the accommodation of interaction
forces when the manipulator is not constrained. Then we
generalize this concept to apply to situations in which the
manipulator (s constrained. This will lead us to
parameterize the necessary performance specifications in
o simple mathematical form in frequency domain.

For the classes of manipulators that are used as
positioning systems, control compensators traditionally
have been designed 5o the system's outputs {position and
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orientation] follow the commands, while rejecting the
external forces, The two specifications
lcommand-following  and  externat-force  rejection)
typically require Large Loop gains for the frequency range
in which the command input and the external forces
contain the most power. Since commands and external
forces  ususlly contain  low-frequency  signals,
command-following  and  extermal-force  rejection
properties taken together establish a design specification
at Low frequencies. To achieve the above properties over
8 targe frequency range is not trvisl; Loop gains cannot be
made arbitrarily Ltarge over an arbitrarily wide frequency
range. A designer is always faced with certain
performance trade-offs; these involve command-following
and external-force rejection versus stability robustness
to high-frequency unmodelled dynamics. The conflict
between these two sets of objectives is evident In most
positioning systems{2). 1f one designs & model-based
compensator for an unconstrained maniputator, bearing in
mind the objectives of disturbance rejection and
robustness to model uncertainties, then the closed-oop
system will operate according to the specified criteria as
tong as the manipulator travels inside the unconstrained
environment. The system will try to reject all external
forces and reach the assigned reference input. However,
once the manipulator crosses the boundary of the
unconstrained environment (i.e., the maniputator interacts
with the environment), the dynamics of the system will
change and stability will no tonger be guaranteed with the
same controller. In fact, the system is now Llikely to
become unstable. Even if stabillty is preserved, large
contact forces may result. Once the manipulator is
constrained, the compensator treats the interaction forces
as disturbances and tnes to rejeci_ them, thus causing
more interaction forces and torques. Saturation, instability,
and physical failure are the consequences of this type of
interaction. But, in many applications such external forces
should be accommodated rather than resisted.
An_siternative to external-force re jection arises if it
S possible to specify the INteraction forces generated In
respongse 1o impoged position., The design objective is to
provide a stabilizing dynamic compensator for the system
such that the ratio of the position of the closed-toop
system to an interaction force is constant within & given
operating frequency range. The sbove statement can be
mathematically expressed by equation 1.
80(jwo) = K 8Y(jeo) for all 0<cw<w, (1
where: .
80(jw) = nx1vector of deviation of the interaction
forces and torques from equiltibrium vealue in
the global cartesian coordinate frame.
8Y[Jew) = nxt vector of deviation of the interaction -port
position and orientation from an equitibrium point

* In this paper force implies force and torque and
position implies position and orientation.



in the gtobal cartesian coordinate frame.
K = nn real-valued non-singular stiffness matrix
with constant members.
w, =bandwidth (frequency range of operation)
Jj =complex number notation, /-1

The stiffness matrix (19} 1s the designer's choice that,
depending on the application, contains different values for
each direction. By specifying K, the designer governs the
behavior of the system in constrained maneuvers. Large
members of the K-matrix imply large interaction forces and
torques. Small members of the K-matnx allow for a
considerable amount of motion in the system In response
to interaction forces and torques, Stiffness vatues, in one
sense, represent the type of behavior a designer may wish
a stable positioning system to exhibit. For example, if the
sustem is expected to encounter some physical constraint
in & particular direction, a stiffness vatue may be selected
such that the desired contact force 15 ensured in that
direction; in directions in which the system is not Likely to
meet any physical constraints, a stiffness value with &
proper position set-point must be selected such that the
system follows the desired reference input. Therefore, a
K-metrix csn be formed to contain stiffness values
appropriate for different directions. Even though a
diagonal stiffness matnx is appealing for the purpose of
static uncoupling, the K-matnx is not restricted to any
structure al this stage. Selection of the K-metrx is
considered as the first item of the set of performance
specifications.

The system must also reject the disturbances {if there
are anyl. If disturbances (e.g.. force measurement noise]
and interaction forces both contain the same frequency
range {or even if the frequency spectrs of both signsais
overlapl, then the system in general cannot differentiate
between disturbances and the interaction forces. Here we
assume that all undesirable disturbances and force
measurement noise act on the system at a frequency
greater than w, [see the grinding example). An analogy
¢an be observed in tracking systems; if measurement noise
and reference Nput share some frequency spectrum, the
system will follow the noise 8s well 8s the reference
input. The reference input must contain components with
frequency spectra much smaller than the spectrum of the
megasurement noise.

Mechanical systems are not generslly responsive to
external forces at high frequencies, as the frequency
ncreases, the effect of the feedbsck dsappears
gradually, depending on the type of controtier used, until
the inertia of the system dominates”itg - overall motion
Therefore, depending on the dynamics of the system,
equation 1 may not hold for 8 wide frequency range. It Is
necessary to consider the specification of w, as the
second item of the set of performance specifications. In
other words, two ndependent issues are addressed by
equation I first, a simple relationship between 8D(jw) and
8Y(Jw) ; second, the frequency range of operation, w,,
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such that equation 1 holds true. Besides choosing an
appropriate stiffness matrix, K, and 8 viable w,, a8 designer
must also guarantee the stability of the closed-loop
system. Therefore, stability is considered to be the third
item of the performance specifications.

The stiffness matrix, K, the frequency range of
operation, w,, and the stability of the closed-Loop system,
form the set of performance specifications. Note that this
set of performance specifications (stiffness, frequency
range of operation, and stability) is just & contemporary
and practical way of formutating the properties that witl
enable the closedHoop system to handie constrained
maneuvers. The achievement of the set of performance
specifications is not triviat; the stiffness of the system
cannot be shaped arbitranly over an arbitrary frequency
range. A designer must accept a certain trade-off between
performance specifications and stability robustness to
model  uncertainties. The  conflict between the
performance specifications and stability robustness
specifications is evident in most closed-toop control
systems. The set of performance specifications and
stability robustness specifications taken

1) Stiffness matrix, K
1) Performance |2) Bandwidth, c,
Controller specifications { 3) Closed-loop stability
Design
Specifications
2) Stability Robustness Specifications

Figure 3-1 Controller Design Specifications

together establish a complete set of controller design
specifications. Figure 3.1 shows how this set is categorized.

Establishing the set of performance specifications (K,
wy, and stability) gives designers a chance to express (at
least to themselves] what they wish to have happen
during a constrained manipulation via a maniputator. Note
that the set of performance specifications does not Imply
any choice of control techniques. We have not even said
how one might achieve the set of performence
specifications.  Such a set only altows designers to
translate their objectives [after understanding the
mechanics of the problem] inte a form that is meaningful
from the standpoint of control theory.

3.1 Performance Specifications

We are Looking for a mathematical model that will
enable us to parameterize the three items of the set of
performance specifications (K, w, and stabilityl. The
parameterization must allow the designer to specify the
stiffness matnx, K, and the frequency range of operation,
wy, Independently, while guaranteeing stability. AL such
performance specifications can be mathematically
expressed by equation 2,

oD(s)=(K + Cs + J82) 8Y(s), s=jew for ail D<o,
(K+Cs+Js?) = impedance

(2]



K, C and J are n X n real-valued non-singular matrices. We
use the Laplace operators in equation 2, to emphasize that
the entire set of performance specifications can be shown
by a Unear dynamic equation in the time domain [see
section 6). Proper selection of the K-matrix allows the
designer to express the desired-stiffaess, while Judicious
. . ) ) :
) : bl
system, To clarify the contributions of J, C and K, consider
figure 3-2, the plot of &Y(jw)/6D[jw) from equstion 2
when n = 1 and the system is slightly underdamped.
8Y(jw)/8D(jw) remains very close to YK for some
bounded frequency range. In other words, the plot of
8Y( jw)/6D(jw) approximatety exhibits the relationship In
equation 1 for some bounded frequency range.
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Figure 3-2: Plot of 8Y(Jwl/80( jw] when n=I

Thererore, K in equation 2 parémeterizes the first item of
the set of performance specifications. Let the frequency
range for which Nequality 3 is true be ¢, .

[vs?+Cs|<B|K]| 5=Jw, n=f (3)
where g is a positive number Less than one which measures
how close the proposed impedance is to K. Note that our
only purpose N introducting g 1S to say that for the
bounded frequency range [0,w,), the impedance in equation
2 behaves approximately Like the K-matrix. g represents
this approximation and is not a design parameter. If K is
glven, then w, and the stability of the system [the second
and third items of the set of performance specifications, as
given by equation 2), depend on J and C. In other words,
the designer can change either J or C to affect w, ond the
stability of the system. For example, for a givenK and C,
decreasing J causes the corner frequency, VK/J, and
consequently w,, to increase. Changing J also moves the
eigenvalues of the system. For a given positive set of K
and C, 8 negstive J locates one eigenvaiue In the
right-hatf complex plane, while a positive J guarantees
that both eigenvalues stay In the Left-hatf complex plane.
The dependence of w, and the stability of the system onC
can be investigated in a similar way. Becsuse of the
dependence of w, and the stability of equation 2 on J and
C, it can be shown that for a given K, there exist many J
and C such that two eigenvalues of the system are slwsys
in the Left-hatf complex plane and 8Y(jw)/8D( jw] remsins
arbitrarily close to 1/K for all 0<cw<w,, We consider J and €
as two factors that parameterize the second and third
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items of the performance specifications, If we consider ¢
8s 8 parameter that only guarantees & stable and stightly
over-dsmped (or slightly under-demped) system, then we
can claim that J is the only effective parameter in
increasing or decreasing the frequency range of operation,
w,, for 8 given K. Since a heavy system is always stower
than a Light system, a Large target inertia, J, impLies a stow
system [narrow cw, J, white a small target inertia implies a
fast system {wide cw,).

The parameterization of the 5et of performance
specifications in the case of more than one dimensior s
simitar to the case of when n = 1. Matrix K in equation 2
models the first item of the set of performnce
specifications because the behavior of {[K+Cs+Js2)
approximates that of K for some bounded frequency range.
It can be shown that for a given matrix K there exist many
J and C matrces such that equation 2 offers a stable
impedance and ( K+Cs+Js? ) is close to K for all O<w<c,.
For example, if J 8nd C are selected to be K and ¥ oK
lwhere o and > are scalars], then the characteristic
equation of equation 2 yelds n uncoupled -second-order
equation for the elgenvalues of the system. 3 and v
can be selected such that all elgenvalues are in the
left~half complex plane. The smaller ¥ is selected to be,
the wider w, witl be. 0f course, this may not be the best
way of choosing J and C, but it does show that there exist
many J ana C matrices such that with 8 proper K, equation
2 models all three items of the set of performance
specifications.  Again, If we consider matrix C as a
parameter that only guarantees a stable and slightly
over-damped [or slightly under-damped] system, then we
can claim that matrix J is the only effective parameter in
increasing or decreasing the frequency range ot operation,
wy , for 8 given K-matrix. The following is 8 summary of

the parameterization of the set of performance
specifications:

stiffness MatiixX s > K;

W, >

11011 ) (U O > C

At this stage, we do not restrain matrices J, C and K to any
structure. The only restriction 15 that J, C and K be
non-singular matrices,

Equation 2 is not the only possible parameterization of
the performance specifications. Similarity of the natural
behavior of manipulators to the form introduced by
equatiori 2 is one reason for the choice of the second-order
impedance.  Within some bounded frequency range,
manipulator dynamics - are governed by Newton's
equations, which are of second order for each degree of
freedom. Practitioners often observe an attenuation In
frequency response tests on maniputstors for some
bounded frequency range which can be approximated 40db
per decade. At high frequencies, other dynamics contribute
to the dynamic behavior of manipulators. - We chose a
second-order impedance because of this dynsmic simitanty.



Sectton 5 and & explain some propertles of the
second-order impedances. Throughout this paper, equation
2 is referred to as the target dynamics. Other forms of this
equation are presented in Section 6.

Here, we use an example to illustrate a potential
difficulty with matrix J. Consider a diagonal K-matrix. I[f
K is chosen so that K=diaglk;ks,.k,), then
J=diaglJi,Jz,-Jna) and C=diaglc,cs,..,C ) can be selected to
guarantee that easch channel has the desired frequency
range of operation. Even though K is selected to be a
diagonal matrix to ensure uncoupling, there exist an
infinite number of J-matnces (not necesserily disgenal)
that can guarantee this uncoupling for the desired
frequency range of operation. This i true because Js? Is
effective only at high frequencies (w> w,); for all 0<ww,,
K plays the most important role in determining the
response of the system. The size of J is important, not its
structure. Of course, the diagonal structure for J makes
its selection much easier. RAs stated earlier, [K+(Cs+Js?)
remains very close to K for some bounded frequency
renge, 0<w<w, For atl O<wiw, (K+Cs+Js?) behaves
approximately Uke K, and the contact forces that sre
generated in response to those components of the imposed
position 8Y(jw) that live in the operating region 0<w<w,
are approximately equal to KéVY(jw), which is nearly
independent of J. [Of course, the response of the system
outside the frequency renge of operation (wytw<oo)
depends on J) On the other hand, w, establishes the
frequency range in which the size of Kis much Larger than
JsZ.  Dependence of w, on the size of J and the
independence of the system's response from J, show that
the size of Jis important and not its structure. {One can
consider the size of the Jmsatrix in terms of its singutar
values.) A diagonal or a non-ciagonal J is equally suitable
for an impedance as long as the size of the matrix
gusrantees that 8D jwl=K&Y[jewlfor 8Ll 0<ww, . In Part
2 of this paper [Reference 24) we will arrive a8t a
non-diagonal J, which can guarantee an uncoupled
stiffness for O<w<w, Wwithout any force measurements.
See Part 2 (reference 24} of this paper for a discussion of
the selection of the Jmatrix.

Some Comments: BY specifying the matrices J, C and
K, a designer can modulate the impedance of the system.
Our primary gosal is to achieve a certain set of w, andKin a
stable sense. Equation 2 happened to be a suitable target
dynamics that can model our superior performance
specifications {K, w, and stabilityl. We do not consider J, C
and K 8s our primary performance specifications. J, C and K
have 3n? members and arriving at some values for all
members of matrices J, C and K independently, without
paying attention to their affects on w, and K i8 an
unnecessary overspecification of a peformance critena.

If 8 maniputator is in contact with Its environment and
a new reference point is commanded {e.g., by a supervisory
program), then, since the parameters of the impedance in
Equstion 2 are under control, the resulting interaction
force on the system will also be under control. This means
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that the controtted manipulator will behave Like a system
that accepts a set of position and orientation commands
and reflects a set of forces and torques as output. Thisis
the fundamental characteristic of our method. In other
words, this method always allows for closed-loop
positioning capabilities. {See Figure 5-1). Stiffness control
{19} also offers this charactenistic. By assigning different
position and orentation commands and by maintaining
complete control in equation 2, 8 designer can achieve the
desired contact forces and torques. Note that we still
have a positioning system for the manipulator with the
ability to modulate the impedance of the system. The
terminology "Impedance Control® (10) which is used in
Literature is incorrect and misleading from the standpoint
of control theory [even though it has been widely used).
We do not control the impedance, we still control the
position and orlentstion of the manipulator; we only
modutate (or adjust] the impedance.

Equstion 2 In the time-domain can be descrnibed by
equation 4.

J &9t} + C 8YIt)+ K & Y(t)=6Dlt) ()
J, Kand € are non-singular matrices. &V(t] and &D(t} are
<1 vectors. Even though we use the time-domain
representation of the target dynamics In our design
method {part 2 of this paper [ reference24)), we plan to
guarantee the achievement of the target dynamics in the
frequency domain. We also select the parameters of
equation 2 to guarantee the design specifications in the
frequency domain. Setection of J, C and K to represent a
frequency-domain design specification implies shaping the
steady-state behavior of the system in response to all
frequency components of the imposed motion command.
An alternative approach is to specify J, C and K to
represent some design specifications 1N the time-domain.
The time-domain representation of the target dynamics
without specifying the time-domain representation of the
input does not express an adequate target dynamic model
for the manipulators. One must also specify the
time-domain representation of the input to the system
atong the time-domain representation of the target
dunamics. For example, it is clear that a manipulator will
not behave sccording to equation 4 in time domain If 8 100
hertz periodic force input is imposed on a manipulator.
This i3 true because all of the high frequency structural
agynamics of the system witl contnbute to the motion of
the system, and equation 4 will no Llonger be an adequate
representation of the target dynamics of the system. In
many manipulators the dynamics of the system cannot be
shaped in the time domain as equation 4 even for a step
input force function. Note that the condition, 0< wlwy , IN
equation 2 assigns a restriction on the components of the
inputs to the system. In other words, we do specify the
type of input for the proposed impedance In equation 2.

3.2 Stability Robustness Specifications
The stability robustness spectfications arise from the



existence of model uncertanties (16, 12). The model
uncertainties fall into two classes. Lack of exact
knowledge about the parameters of the modelled
dynamics {e.g., the Inertia matrix} constitute the first class
of model uncertainties.  High frequency unmodelled
dynamics fsuch as bending or torsion dynamics of the
members} form the second class of unmodelled dynamics.
Note that the model uncertainties of the second class
generally give rise to modelling errors only at high
frequencies, while the model uncertainties of the first
class can contribute to modelling errors at all frequencies.
If the compenssted system does not satisry the stability
robustness specifications, the system may not become
unstable. This i1s true because our robustness test is
sufficient condition for stabiity.  Satisfaction of the
robustness test guarantees stability, while the fallure of
the robustness test does not necessarily imply instability.
If one cannot meet the stability robustness specifications
at high frequencies, it is necessary to consider the
higher-order dynamics (if at all possible) when modetling
the system. Rdding the higher-order dynamics to the
system allows for weaker stability robustness
specifications at high frequencies. If higher-order
dynamics cannot be determined, it is necessory to
compromise on the set of performance specifications. A
smatl w, will atlow designers to meet strong sets of
stabibity robustness specifications at high frequencies. On
the other hand, with a8 very small.wy,, stability robustness
to parameter uncertsinties may not be satisfied. This 1S
true because stability robustness to parameter
uncertainties assigns a Lower bound on w,. To achieve 8
wide w,, a designer should have a good model of the
manipulator at high frequencies (and consequently., a weak
set of stability robustness specifications at high
frequencies]. Because of the conflict between desired wy
and stability robustness to high-frequency dynamics, it is &
struggle to meet both sets of specifications for a given
model uncertainty. The frequency range of operation; w,,
cannot be selected to be arbitrarily wide If 8 good model
of the manipulator does not exist a8t high frequencies,
white a good model of the manipulator at high frequencies
makes it possible to retain the target dynamics for a wide
w,. The retstionship between w, and stability robustness
will be presented in Part 2 { Reference 24) of this paper.
Even though w, is the ma jor candidate that can be used to
compromise against stability robustness specifications
there are other freedoms in design technique that
sometimes can be used for the same purpose. This will be
clanfied in Part Z of this paper.

4.

The following examples itlustrate some applications
of impedance control. For the purpose of understanding
the application of this theory, the problems in these
examples are simplified.

6rinding. Consider the grinding of a surface by 8
maniputator; the objective 18 to use the manipulator to
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smooth the surface down to the commended trajectory
represented by the dashed Line {12} in Figure 4-1. Here we
give an approach in which this task is performed by a
manipulstor. It is Intuitive to design 8 closed-loop
positioning system for the manipulator with a large
stiffness value In the R-direction and a low stiffness
value in the T-direction.

Figure 4-1 a: Gnnding a Surface via 8 Manipulator, b: Peg
inHole

- In many tasks, it is benefictal to produce the compliant
motion In an active end-effector with a few degrees of
freedom instead of producing the compliant motion for the
entire arm. A large stiffness value in the R-direction
causes the end-point of the manipulator to reject the
external forces and stay very close to the commanded
tra jectory (dashed Line). The Larger the stiffness of the
manipulator In  the R-direction, the smoother the surface
will be. Given the volume of metal to be removed, the
desired tolerance in the R-direction  prescribes an
approximate value for stiffness in the R-direction. The
force necessary to cut in the T-direction at & constant
traverse speed is approximately proportional to the
volume of metal to be removed {1). Therefore, the Larger
the "bumps® on the surface, the slower the maniputator's
end-point must move in the T-direction. This IS necessary
because the slower speed of the -end-point along the
surface implies Less volume of metal to be removed per
unit of time, and consequently, Lless force in the
T-direction. To remove the metal from the surface, the
manipulator should slow down in response to external
forces resulting from Llarge “bumps' The above
explanation means that it is necessary for the manipulator
to accommodate the interaction forces along the
T-direction, which directly implies a small stiffniess value
in the T-direction. If a designer does not accommodate
the interaction forces by specifying a small stiffness value
in the T-direction, then the Large "bumps” on the surface
will produce large contact forces in the T-direction. Two
problems are associated with Large contact forces in the
T-direction: the cutting tool may stall (if it does not break];
a slight motion may develop in the manipulator's end-point
motion along the R-direction, which might exceed the
desired tolerance. A small value for stiffness in the
T-direction [reletive to the stiffness in the R-direction)
guarantees the desired contact forces in the T-direction.
The rougher the surface is, the smatler K must be In the
T-direction. The frequency spectrum of the roughness of
the surface and the desired translational speed of the



maniputator end-point atong the surface determine the
frequency range of operation, w,. Given the stiffness in
both directions, a designer can artive at proper values for
J and C to guarantee w, and stability. At each point on the
tra jectory, a controller must be modified in the joint-sngle
coordinate frame such that the desired target impedance
of the form in Equation 2 is achieved in the global
coordinate frame. The rotation of the cutter causes some
high-frequency disturbances 1n the manipulator. The
contact force measurement is also Noisy. w, Must be
setected to be Lower than the frequency range of the
cutter disturbances and the force measurement noise. The
satisfaction of equstion 2 prevents the system from
responding to these disturbances and noises.

Peg-in-Hole. The peg-n-hole task is generic to many
assembly operations such as inserting a rod into a hole or
& computer board into & slot. There are many strateges
for this task [for an example see reference (22} J; most
assume that the manipulators are capable of producing
comptliant motion. We are not giving & complete solution to
the peg-inhole problem, but just a simplified example to
illustrate the use of this method in such maneuvers. Once
the peg is located at the position shown in Figure 4-+b, a
small stiffness in the X-direction must be selected. If
there 15 any misalignment between the peg axis and the
hole axis, 8 small stiffness in the X-direction causes the
maniputator end-point to align itself with the axis of the
hole. If the stiffness in the X-direction is large, the
manipulator end-point witl not move in the X-direction, and
targe contact forces will result. A Large stiffness must be
selected for the Y-direction to guarantee a positioning
system that will reject the friction forces in the
y-direction and insert the peg into the hole

5. Global Stabitity of the Target Dynamics

We consider two issues of importance in analyzing the
stability of the manipulator that interacts with the
environment. The first issue concerns the condition under
which equstion 2 offers a stable target dynamics. The
stability of the target dynamics is not enough to assure
the stability of the manipulator snd its environment taken
as a whole. This brings up the second issue: the global
stability of the manipulstor and its environment.

The target dynamics of a manipulator must be stable.
Note that stability is not a condition for achievability. (See
Part 2 of this paper [Reference 24} Stability of the target
dynamics depends on the values of J, C and K.
sufficient condition for the stability of the target dynamics
15 given by Theorem 1(3, 4.

Theorem 1 If J, C and K are real and symmetric,
positive definite matrices, then the system in equation 2 is
stable, and if C and K are symmetric, non-negative definite
matrices, then the system in equation 2 will be marginalty
stable. 1f K and/or C are symmetng, positive, semi-definite
matrices, then some or all eigenvalues will be on the
imaginary axis. (These cases are considered unstable.)
Note that the conditions on J, C and K are sufficient for

One.
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stability, but not necessary. We might arrive at a set of J,
C and K that assures stability without satisfying the
theorem condition. The stability of the target dynamics is
not enough to assure stability of the overall system of
the manipulator and its environment. In other words, the
following question cannot be answered by this theorem: If
& manipulator with a stable impedance as expressed by
equation 2 is in contact with a stable environment, does
the system of the manipulator and its environment remain
stable? This is not clear; two stable systems interacting
with each other may result in an unstable system. The
following theorem is needed for the rigarous assurance of
the overall stabiity of the manipulator and Its
environment:

Theorem 2. If the closed-Loop dynamic behavior of
the manipulator is given by equation S:

J 8Y(1)+CaY[t)+KEYIL = 8D(t), SD(t} and sY(tleRr"
J=dT0, K=KkT90, cC=tho;

(5)

and if the environment s 8 system with the dynsmic behavior
represented by equation 6:

Jp 87t €, 89 (t)+ KeBYelt] = & Dylt1+ & DOf) (6]
80[t), 8Dt} and &Y, [t}eR™
Jo= dg1> 0, CemC 0;
where:

K = KeT> 0,

& D[t] = the force that the manipulator exerts on the
environment;

8 DY) =all other foces on the environment {uncorrelated
with the manipulator ststes and environment
states); and

& D{t) =the environmental force on the manipulstor,

then the overall system (manipulator and environment] Is

stable. The Proof is given in Appendix 1.

According to this theorem, if J, C and K are selected as
symmetnic, positive definite matrices, the overall system
of the maniputator and its environment taken together will
yietd eigenvalues in the Left complex plane. Note that this
theorem guarsntees the global stability of the
manipulator and the environment taken as a whole, If the
manipulator behsves according to equstion 4. If the
controlier does not achieve the target impedance exactly,
but resutts in a controtled :

commanded

incremental
pasition &'vls) 50s)

[’ Ervirnnment Oynamics 4]

Figure 5-1: The interaction of the maniputator and the
environment in the ideal case when the target impedance
Is achleved for all 0<w<eo,



behavior "approximately" like the target dynamics for a
bounded frequency range, then the above theorem does
not guarantee the global stability. The importance of
theorem 2 is that it shows that the target impedance has
desirable properties. The block disgram in Figure 5-1 shows
how the manipulator and the environment interact with
each other in an ideal case when the target impedance is
achieved for all 0<w<oo. &Y(s] is the imposed position on
the maniputator which consists of the algebraic addition of
the commanded incrementsl  position and the
environmental position.

6. Geometric Properties of the Target Dynamics

Since a geometric approach is being considered for
compensator design (Part 2 of this paper (Referenice 24)}, it
is necessary to identify the eigenstructure properties of
the target dynamics. The target dynamics that correlate
interaction forces with system position are given in
state-space form by equations 7 and 8,

8Y(t) On  In 8Y(t) Om
= + st} (7
891t -5k =o' |evi J-!
— —
Ay By
YY) = (I O] [6¥(t) (8
L——-_'_____/ .
Ce 8Y(t)

Ay = 2n2n, By = 2nxn, Cy = nx2n
and also: Gys)=[Js? + Cs+ K )™= Cy( 8lpnon-P )" B

Gis] is the transfer function matrix that maps the
interaction force to the end point position. (Gyls) is the

desired target transfer function matrix.) The advantage of
this form is that it enables a designer to describe the
target dynamics of a system in geometrical terms. A,
contains information concerning the modes (eigenvalues]
and the relative distribution of the modes (eigenvectors}
among the states. The target dynamics in equation 2 imply
a8 closedHoop behavior for the maniputator in the
frequency domain. Our goal is 1o make the manipulator
behave according to equation 2 for all 0<w<w,. Note that
in general the closed-loop behavior of a system cannct be
shaped arbitrarily over an arbitrary frequency range. The
time-doman presentation of the target dynamics in
equation 7 and 8 offer & set of eigenvalues and
eigenvectors to model the internal dynamic behavior of
the target dynamics.
impedance, A, and Its corresponding right eigenvector, z;,
can be computed from equation 9.
(Ailonon - A4 )2i= 0o, 2i#02p, 1=1,2, .., 2N (9)

Substituting for A, from equation 7 in equation 9 and
solving for 2; results in equation 10

Each eigenvalue of the target
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q
NG

where: (JAZ+« CA +Klg =0, q=0,, i=1,2,..,2n

2, (10

{1

The impedances that always yield s comptete set of
eigenvectors are called simple (4, 13,1 * In other words,
simple impedances guarantee & complete set of
elgenvectors, despite the multiplicity of their eigenvalues.
Equations 7 and 8 represent a state-space relationship
betuween end-point position and interaction force In the
global coordinate frame. The transformation of the
end-point position from the global coordinate frame to the

Joint-angle coordinate frame is given In reference (21); it
results in the following equation:
Y[t} =, d6(t) {12)
where J, 1s the Jacobian of the matrix that trensforms
Joint-angle coordinates to global coordinates. Equation 2
represents a dynamic behavior in the neighborhood of an
equilibrium point; &D(t} and &Y(t) are small increments
away from an equilibrium point (a point with zero speed in
space). Knowing this, we can write:
8Y(t)=J, 86(t) (13)

If v, is the right eigenvector of the target dynamics in the
Joint-sngle coordinate frame, then:

-1
‘Jc Onn
Vo= 2 =

O o

%
Jp I8 non-singular
Ao g

the 2n elgenvectors of equation 14 form & 2n x 2n matrix V:

V=l Vi Voo Vop). (15)

V is a basis for the state-space representation of the
target dynamics in the Joint-angte coordinate freme. V
shows how the desired modes are coupled among the
states of the target dynamics. The 2n eigenvalues
resulting from equations 9 or 10 are invanant under any
Linear transformation and form a self-conjugste constant
set A={A;1i=1,2,.., 2n). A and V taken together describe the
elgenstructure of the desired impedance in the joint-angle
coordingte frame. For simple impedances, V is 8 full rank
matrix.

* If (UAZ+CA+K) has degeneracy. equal to the
multipticity of elgenvalue A, In equation M,
[UA2+CA+K) is & simple impedance. If J, C and K are
symmetric  positive  definite  matrices,  then
{UAZ+CA+K] is & simple impedance.(4,13,1)



7. _Conclusion

We started with conventional controller design
specifications concermning the treatment of the interaction
forces and torques when the maniputator is not
constrained. Generslizing this trestment to include cases
when the manipulator is constrained, we stated & set of
controller design specifications to assure compliant motion
with stability in the presence of bounded uncertainties
{Figure 3-1. One of the most important contributions of this
paper is the formulation of the concept of compliant
motion in terms of a meaningful set of controller design
specifications, This set {shown in Figure 3-1] is & proper
definition of the compliant motion.  Equation 2 c¢én
perameterize our set of performance specifications. The
following 1s a summary of the parameterization of the set
of performance specifications:

stiffness matrx .. K
Wy >
stability C

We assume C to be & meatrix that stways produces 8
stightly overdamped or underdamped stable system;
therefore, for & given K-matrix, the J-matrix is the
parameter that affects w, the most, and many Jinatrices
can parameterize wy,. In particutar, we claim (and we will
show in Part 2 (Reference 24)) that & wide w, (or & small
J-matrix] may cause instability in the presence of high
frequency unmodelled dynamics. The stability of the
target impedance and its global stability with the
environment result from the appropriate choice of the
target-dynamics and not the design methodology.

1. Appendix 1

Proof: Since the manipulator is in contact with the
environment, vectors 8Y(t} and §Y,(t) might have members
in common. Form a p-dimensional vector SUW(t] such that
equation 16 and equation 17 are sstisfied [(n + m > pl. SW(t)
15 & vector that contsins all states of the manipulator and
environment. Since the manipulator and environment are
in contact with each other, 8Y,t] and 6v{t] will have some
common members. The first (p-n} members of W(t) are
those states of the environment that are not states of the
maniputator. The Llast (p-m) members of SUW(t) are those
states of the manipulator that do not represent the
environmental dynamics.

OVelt) = T, SW(t) (161
SY{t) =T, 6WK (17)

To and Ty sre T x p and n x p matrices with 0 and 1as their
members. Substituting for 8Y.[t) and &v{t) in equations 5
and & results in equations 18 and 19.

J T, 8W(t) + € Ty 8W(t) + K Ty SWIt) = S0(t) (18)

JeTe8WIt) +C, T, BUIL) + KT SWIL = 8D,t1 » SDLML)  (10]
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Because of the intersction between the manipulator and
the environment, equation 20 is also true.
T, 8D(t)=-T,T 8D(t] (20)

Omitting 6D{t) and 8D,(t] from equations 18 and 19 by means
of equation 20 results in:

(TyT U Ty + T, Tl 8W() + (7T C Ty + T, C, TJouit) +

(TyT K Ty + T Ky TeJ W) = T,T 8D°(t) (21

It can be verified that:

[T.jT JTg+ Te! Jp To) = @ symmetric, positive definite matrix;
(T,F C Ty + T Cq To)= 8 symmetric, positive definite matnx;
[TyT K Ty + TeT K, Tek 8 symmetric, positive definite matrix.

According to Theorem 1, equation 21 {which shows the
dynamics of the manipulator and the environment] is
stable. According to this theorem, if J, C and K s&re
setected as symmetric, positive definite matrices, the
overall system of the manipulator and its environment
taken together will yleld eigenvalues In the left complex
plane.

Note that this theorem guarantees the global stability
of the manipulator and the environment taken as a whole,
if the manipulator behaves according to equation 4. The
block diagram in Figure 1-1 shows how the maniputator and
the environment interact with each other in an idesl case
when the target impedance 15 achieved for all 0<c<oo,
8v{s} is the imposed position on the manipulator which
consists of the algebraic addition of the commanded
incremental position and the environmental position. If the
controller does not achieve the target impedance exactly,
but results in a controlled behavior "approximately" like
the target dynamics for a bounded frequency range, then
the above theorem does not guarantee the global
stabitity. The importance of Theorem 2 is that it shows
that the target impedance has desirable properties. The
resulting impedance when the target dynamics is achieved
only for a bounded frequency range can be shown as:
{(UsZ+Cs+ Kl + Eils)) [22)
where Efs) shows the difference between the achievable
target dynamics and the ideal target dynamics. The
closed-loop combination of the maniputstor and the
environment, considering expression 22, is shown in figure
I-2. The global stability of the system in Figure 1-2 is no
longer guaranteed by this theorem. Using the result in
references (14,18], the closed-loop system in Figure 1-2 witl
be stable if the inequality 23 15 satisfied for all 0<w<o0,

T T + (U857 +C5 + KI™ (T, GlSIT,T) > oinge (Exl)) (23)

where: Gyls) = {Te JeTe 82 + T Co T 6 + To KTl



commanded
incremertal

position

&0}
N

Figure -1

The Interaction of the manipulstor and

environment in the ideal case when the target impedance
is achieved for all 0<¢w<oo,

c:ommandedl
incremental )
pasitior I}V[S} 800z

) Inr,+E,_[S'|l—DL_Is 4L 4K

Figure I-2: The interaction of the msanipulator and the
environment when the target Impedance is achieved for
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